BGA返修台

生活百科 2023-01-17 20:00生活百科www.aizhengw.cn

BGA返修台

BGA返修台分光学对位与非光学对位,光学对位通过光学模组採用裂稜镜成像;非光学对位则是通过肉眼将BGA根据PCB板丝印线及点对位,以达到对位返修。

基本介绍

  • 中文名BGA返修台
  • 分类非光学机型、光学机型
  • 相关释义分光学对位与非光学对位
  • 类型机器

基本分类

一,非光学机型
二,光学机型

相关释义

分光学对位与非光学对位
光学对位——通过光学模组採用裂稜镜成像,LED照明方式,调整光场分布,使小晶片成像显示与显示器上。以达到光学对位返修。
非光学对位——则是通过肉眼将BGA根据PCB板丝印线及点对位,以达到对位返修。
针对不同大小的BGA原件进行视觉对位,焊接、拆卸的智慧型操作设备,有效提高返修率生产率,大大降低成本。BGABGA封装记忆体
BGA植球加工
BGA封装(Ball Grid Array Package)的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它
的功耗增加,但BGA能用可控塌陷晶片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。
BGA封装技术可详分为五大类
1.PBGA(Plasric BGA)基板一般为2-4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均採用这种封装形式。
2.CBGA(CeramicBGA)基板即陶瓷基板,晶片与基板间的电气连线通常採用倒装晶片(FlipChip,简称FC)的安装方式。Intel系列CPU中,Pentium I、II、Pentium Pro处理器均採用过这种封装形式。
3.FCBGA(FilpChipBGA)基板硬质多层基板。
4.TBGA(TapeBGA)基板基板为带状软质的1-2层PCB电路板。
5.CDPBGA(Carity Down PBGA)基板指封装中央有方型低陷的晶片区(又称空腔区)。
说到BGA封装就不能不提Kingmax公司的专利TinyBGA技术,TinyBGA英文全称为Tiny Ball Grid Array(小型球栅阵列封装),属于是BGA封装技术的一个分支。是Kingmax公司于1998年8月开发成功的,其晶片面积与封装面积之比不小于1:1.14,可以使记忆体在体积不变的情况下记忆体容量提高2~3倍,与TSOP封装产品相比,其具有更小的体积、更好的散热性能和电性能。
BGA主要有四种基本类型PBGA、CBGA、CCGA和TBGA,一般都是在封装体的底部连线着作为I/O引出端的焊球阵列。这些封装的焊球阵列典型的间距为1.0mm、1.27mm、1.5mm,焊球的铅锡组份常见的主要有63Sn/37Pb和90Pb/10Sn两种,焊球的直径由于没有这方面相应的标準而各个公司不尽相同。从BGA的组装技术方面来看,BGA有着比QFP器件更优越的特点,其主要体现在BGA器件对于贴装精度的要求不太严格,理论上讲,在焊接回流过程中,即使焊球相对于焊盘的偏移量达50%之多,也会由于焊料的表面张力作用而使器件位置得以自动校正,这种情况经实验证明是相当明显的。,BGA不再存在类似QFP之类器件的引脚变形问题,而且BGA还具有相对QFP等器件较良好的共面性,其引出端间距与QFP相比要大得多,可以明显减少因焊膏印刷缺陷导致焊点“桥接”的问题;,BGA还有良好的电性能和热特性,以及较高的互联密度。BGA的主要缺点在于焊点的检测和返修都比较困难,对焊点的可靠性要求比较严格,使得BGA器件在很多领域的套用中受到限制。

基本类型

以下就四种基本类型的BGA,从其结构特点等多方面加以阐述。
1.1 PBGA(Plastic Ball Grid Array塑封球栅阵列)
PBGA即通常所说的OMPAC(Overmolded Plastic Array Carrier),是最普通的BGA封装类型(见图2)。PBGA的载体是普通的印製板基材,例如FR-4、BT树脂等。硅片通过金属丝压焊方式连线到载体的上表面,然后用塑胶模压成形,在载体的下表面连线有共晶组份(37Pb/63Sn)的焊球阵列。焊球阵列在器件底面上可以呈完全分布或部分分布(见图3),通常的焊球尺寸0.75~0.89mm左右,焊球节距有1.0mm、1.27mm、1.5mm几种。
2 PBGA内部结构
3部分分布与完全分布示意图
PBGA可以用现有的表面安装设备和工艺进行组装。通过漏印方式把共晶组份焊膏印刷到相应的PCB焊盘上,然后把PBGA的焊球对应压入焊膏并进行回流,因漏印採用的焊膏和封装体的焊球均为共晶焊料,所以在回流过程中焊球和焊膏共熔,由于器件重量和表面张力的作用,焊球坍塌使得器件底部和PCB之间的间隙减小,焊点固化后呈椭球形。PBGA169~313已有批量生产,各大公司正不断开发更高的I/O数的PBGA产品,预计在近两年内I/O数可达600~1000。
PBGA封装的主要优点
①可以利用现有的组装技术和原材料製造PBGA,整个封装的费用相对较低。
②和QFP器件相比,不易受到机械损伤。
③可适用于大批量的电子组装。
PBGA技术的主要挑战是保证封装的共面性、减少潮气的吸收和防止“popcorn”现象的产生以及解决因日趋增大的硅片尺寸引起的可靠性问题,对于更高I/O数的封装,PBGA技术的难度将更大。由于载体所用材料是印製板基材,所以在组装件中PCB和PBGA载体的热膨胀係数(TCE)近乎相同,在回流焊接过程中,对焊点几乎不产生应力,对焊点的可靠性影响也较小。PBGA套用遇到的问题是如何继续减少PBGA封装的费用,使PBGA能在I/O数较低的情况下仍比QFP节省费用。
1.2 CBGA(Ceramic Ball Grid Array陶瓷球栅阵列)
4 CBGACCGA的结构比较
CBGA通常也称作SBC(Solder Ball Carrier),是BGA封装的第二种类型(见图4)。CBGA的硅片连线在多层陶瓷载体的上表面,硅片与多层陶瓷载体的连线可以有两种形式,第一种是硅片线路层朝上,採用金属丝压焊的方式实现连线,另一种则是硅片的线路层朝下,採用倒装片结构方式实现硅片与载体的连线。硅片连线完成之后,对硅片採用环氧树脂等填充物进行包封以提高可靠性和提供必要的机械防护。在陶瓷载体的下表面,连线有90Pb/10Sn焊球阵列,焊球阵列的分布可以有完全分布或部分分布两种形式,焊球尺寸通常约0.89mm左右,间距因各家公司而异,常见的为1.0mm和1.27mm。
PBGA器件也可以用现有的组装设备和工艺进行组装,但由于与PBGA的焊球组份不同,使得整个组装过程和PBGA有所不同。PBGA组装採用的共晶焊膏的回流温度为183℃,而CBGA焊球的熔化温度约为300℃,现有的表面安装回流过程大都是在220℃回流,在这个回流温度下仅熔化了焊膏,但焊球没有熔化。,要形成良好的焊点,漏印到焊盘上的焊膏量和PBGA相比要多,其目的是要用焊膏补偿CBGA焊球的共平面误差,是保证能形成可靠的焊点连线。
在回流之后,共晶焊料包容焊球形成焊点,焊球起到了刚性支撑的作用,器件底部与PCB的间隙通常要比PBGA大。CBGA的焊点是由两种不同的Pb/Sn组份焊料形成的,但共晶焊料和焊球之间的界面实际上并不明显,通常焊点的金相分析,可以看到在界面区域形成一个从90Pb/10Sn到37Pb/63Sn的过渡区。
一些产品已採用了I/O数196~625的CBGA封装器件,但CBGA的套用还不太广泛,更高I/O数的CBGA封装的发展也停滞不前,主要归咎于CBGA组装中存在的PCB和多层陶瓷载体之间的热膨胀係数(TCE)不匹配问题,这个问题的出现,使得在热循环时引起封装体尺寸较大的CBGA焊点产生失效。通过大量的可靠性测试,已经证实了封装体尺寸小于32mm×32mm的CBGA均可以满足工业标準热循环试验规范。CBGA的I/O数目限制在625以下,对于陶瓷封装体尺寸在32mm×32mm以上的,则必须要考虑採取其它类型的BGA。
CBGA封装的主要优点在于
1)具有优良的电性能和热特性。
2)具有良好的密封性能。
3)和QFP器件相比,CBGA不易受到机械损伤。
4)适用于I/O数大于250的电子组装套用。
,由于CBGA的硅片与多层陶瓷的连线可以採用倒装片连线方式,所以可以达到比金属丝压焊连线方式更高的互联密度。在很多情况下,尤其是在高I/O数的套用下,ASICs的硅片尺寸受到金属丝压焊焊盘尺寸的限制,CBGA通过採用了更高密度的硅片互联线路,使得硅片的尺寸可以进一步减小而又不牺牲功能,从而降低了费用。

发展

CBGA技术的发展没有太大的困难,其主要的挑战在于如何使CBGA在电子组装行业的各个领域中得到广泛套用。必须要能保证CBGA封装在大批量生产工业环境中的可靠性,CBGA封装的费用必须要能和其它BGA封装相比拟。由于CBGA封装的複杂性以及相对高的费用,使得CBGA被局限套用于高性能、高I/O数要求的电子产品。,由于CBGA封装的重量要比其它类型BGA封装大,所以在携带型电子产品中的套用也受到限制。
1.3 CCGA(Ceramic Cloumn Grid Array陶瓷柱栅阵列)
CCGA也称SCC(Solder Column Carrier),是CBGA在陶瓷体尺寸大于32mm×32mm时的另一种形式(见图5),和CBGA不同的是在陶瓷载体的下表面连线的不是焊球而是90Pb/10Sn的焊料柱,焊料柱阵列可以是完全分布或部分分布的,常见的焊料柱直径约0.5mm,高度约为2.21mm,柱阵列间距典型的为1.27mm。CCGA有两种形式,一种是焊料柱与陶瓷底部採用共晶焊料连线,另一种则採用浇铸式固定结构。CCGA的焊料柱可以承受因PCB和陶瓷载体的热膨胀係数TCE不匹配产生的应力,大量的可靠性试验证实封装体尺寸小于44mm×44mm的CCGA均可以满足工业标準热循环试验规范。CCGA的优缺点和CBGA非常相似,唯一的明显差异是CCGA的焊料柱比CBGA的焊球在组装过程中更容易受到机械损伤。有些电子产品已经开始套用CCGA封装,I/O数在626~1225之间的CCGA封装暂时尚未形成批量生产,I/O数大于2000的CCGA封装仍在开发中。
图5CCGA(Ceramic Cloumn Grid Array陶瓷柱栅阵列)
1.4 TBGA(Tape Ball Grid Array载带球栅阵列)
6 TBGA内部结构
TBGA又称为ATAB(Araay Tape Automated Bonding),是BGA的一种相对较新的封装类型(见图6)。TBGA的载体是铜/聚醯亚胺/铜双金属层带,载体的上表面分布有信号传输用的铜导线,而另一面则作为地层使用。硅片与载体之间的连线可以採用倒装片技术来实现,当硅片与载体的连线完成后,对硅片进行包封以防止受到机械损伤。载体上的过孔起到了连通两个表面、实现信号传输的作用,焊球通过採用类似金属丝压焊的微焊接工艺连线到过孔焊盘上形成焊球阵列。在载体的顶面用胶连线着一个加固层,用于给封装体提供刚性和保证封装体的共面性。在倒装硅片的背面一般用导热胶连线着散热片,给封装体提供良好的热特性。TBGA的焊球组份为90Pb/10Sn,焊球直径约为0.65mm,典型的焊球阵列间距有1.0mm、1.27mm、1.5mm几种,TBGA与PCB之间的组装所採用的为63Sn/37Pb共晶焊料。TBGA也可以利用现有的表面安装设备和工艺,採用与CBGA相似的组装方法进行组装。
常用的TBGA封装的I/O数小于448,TBGA736等产品已上市,国外一些大公司正在开发I/O数大于1000的TBGA。
TBGA封装的优点在于
①比其它大多数BGA封装类型更轻更小(尤其是I/O数较高的封装)。
②具有比QFP和PBGA封装更优越的电性能。
③可适于批量电子组装。
,这种封装採用高密度的倒装片形式实现硅片与载体的连线,使TBGA具有信号噪声小等很多优点,由于印製板和TBGA封装中加固层的热膨胀係数TCE基本上是相互匹配的,所以对组装后TBGA焊点可靠性的影响并不大,TBGA封装遇到的最主要问题是潮气的吸收对封装的影响。
TBGA套用遇到的问题是如何才能在电子组装领域中占有一席之地,TBGA的可靠性必须能在批量生产环境中予以证实,TBGA封装的费用必须要能和PBGA封装相比拟。由于TBGA的複杂性和相对高的封装费用,TBGA主要用于高性能、高I/O数的电子产品。
2 Flip Chip :
和其它表面安装器件不同,倒装片无封装,互联阵列分布于硅片的表面,取代了金属丝压焊连线形式,硅片直接以倒扣方式安装到PCB上。倒装片不再需要从硅片向四周引出I/O端,互联的长度大大缩短,减小了RC延迟,有效地提高了电性能。倒装片连线有三种主要类型C4、DC4和FCAA。
2.1 C4(Controlled Collapse Chip Connection可控坍塌晶片连线)
7 C4结构形式
C4是类似超细间距BGA的一种形式(见图7)。与硅片连线的焊球阵列一般的间距为0.203~0.254mm,焊球直径为0.102~0.127mm,焊球组份为97Pb/3Sn,这些焊球在硅片上可以呈完全分布或部分分布。由于陶瓷可以承受较高的回流温度,陶瓷被用来作为C4连线的基材,通常是在陶瓷的表面上预先分布有镀Au或Sn的连线盘,然后进行C4形式的倒装片连线。
C4连线不能使用现有的组装设备和工艺进行组装,因为97Pb/3Sn焊球的熔化温度是320℃,且在这种採用C4连线的互联结构中不存在其它组份的焊料。在C4连线中,取代了焊膏漏印,而是採用印刷高温助焊剂的方式,将高温助焊剂印刷到基材的焊盘或硅片的焊球上,然后硅片上的焊球和基材上相应焊盘精确对位,通过助焊剂提供足够的粘附力来保持相对位置并直到回流焊接完成。C4连线採用的回流温度为360℃,在该温度下焊球熔化,硅片处于“悬浮”状态,由于焊料表面张力的作用,硅片会自动校正焊球和焊盘的相对位置,最终焊料坍塌至一定的高度形成连线点。C4连线方式主要套用于CBGA和CCGA封装中,,有些厂家在陶瓷多晶片模组(MCM—C)套用中也使用这种技术。採用C4连线的I/O数在1500以下,一些公司预期开发的I/O数将超过3000。
C4连线的优点在于
1)具有优良的电性能和热特性。
2)在中等焊球间距的情况下,I/O数可以很高。
3)不受焊盘尺寸的限制。
4)可以适于批量生产。
5)可大大减小尺寸和重量。
,C4连线在硅片和基材之间只有一个互联界面,可提供最短的、干扰最小的信号传递通道,减少的界面数量使得结构更简单,并且可靠性更高。C4连线在技术上还存在很多挑战,真正套用于电子产品还有一定的难度。C4连线方式只能适用于陶瓷基材,它们将在高性能、高I/O数的产品中得到广泛的套用,例如CBGA、CCGA和MCM—C等。
2.2 DCA(Direct Chip Attach直接晶片连线)
DCA和C4类似,是一种超细间距连线(见图8)。DCA的硅片和C4连线中的硅片结构相同,两者之间的唯一区别在于基材的选择,DCA採用的基材是典型的印製材料。DCA的焊球组份是97Pb/3Sn,连线焊接盘上的焊料是共晶焊料(37Pb/63Sn)。对于DCA,由于间距仅为0.203~0.254mm,共晶焊料漏印到连线焊盘上相当困难,所以取代焊膏漏印这种方式,在组装前给连线焊盘顶镀上铅锡焊料,焊盘上的焊料体积要求十分严格,通常要比其它超细间距元件所用的焊料多。在连线焊盘上0.051~0.102mm厚的焊料由于是预镀的,一般略呈圆顶状,必须要在贴片前整平,否则会影响焊球和焊盘的可靠对位。
8 DCA结构形式
这种连线方式可以用表面安装设备和工艺实现。,助焊剂通过印刷方式被分配到硅片上,然后进行硅片的贴装,回流焊接。DCA组装採用的回流温度约220℃,低于焊球的熔点但高于连线焊盘上的共晶焊料熔点,硅片上焊球的作用相当于刚性支撑,回流之后共晶焊料熔化,在焊球与焊盘之间形成焊点连线。对于这种採用两种不同的Pb/Sn组份形成的焊点,在焊点中两种焊料的界面实际并不明显,而是形成从97Pb/3Sn到37Pb/63Sn的光滑过渡区域。由于焊球的刚性支撑作用,DCA组装中焊球不“坍塌”,但还具有自校正特性。DCA已经开始得到套用,I/O数主要在350以下,一些公司计画开发的I/O数超过500。这种技术发展的动力不是更高的I/O数,而主要是着眼于尺寸、重量和费用的减小。DCA的特点和C4非常相似,由于DCA可以利用现有的表面安装工艺实现与PCB的连线,所以能採用这种技术的套用很多,尤其是在携带型电子产品中的套用。
并不能夸大DCA技术的优点,在DCA技术的发展过程中仍有许多技术挑战。在实际生产中使用这种技术的组装厂家为数并不多,他们都在努力提高工艺水平,以扩大DCA的套用。由于DCA连线把那些和高密度相关的複杂性转移到PCB上,所以给PCB的製造增加了难度,,专门生产带有焊球的硅片的厂家为数不多,在组装设备、工艺等各方面仍存在着很多值得关注的问题,只有这些问题得到了解决,才能推动DCA技术的发展。
2.3 FCAA(Flip Chip Adhesive Attachment倒装片胶连线)
FCAA连线存在多种形式,当前仍处于初期开发阶段。硅片与基材之间的连线不採用焊料,而是用胶来代替。这种连线中的硅片底部可以有焊球,也可以採用焊料凸点等结构。FCAA所用的胶包括各向同性和各向异性等多种类型,主要取决于实际套用中的连线状况。,基材的选用通常有陶瓷、印製板材料和柔性电路板等。这种技术目前尚未成熟,在这里就不作更多的阐述。

详细介绍

BGA的全称是Ball Grid Array(球栅阵列结构的PCB),它是积体电路採用有机载板的一种封装法。它具有①封装面积减少②功能加大,引脚数目增多③PCB板溶焊时能自我居中,易上锡④可靠性高⑤电性能好,整体成本低等特点。有BGA的PCB板一般小孔较多,大多数客户BGA下过孔设计为成品孔直径8~12mil,BGA处表面贴到孔的距离以规格为31.5mil为例,一般不小于10.5mil。BGA下过孔需塞孔,BGA焊盘不允许上油墨,BGA焊盘上不钻孔。- S% X. i: E% h5 O% X o" ?# _我们公司目前对BGA下过孔塞孔主要採用工艺有①刬平前塞孔适用于BGA塞孔处阻焊单面露出或部分露出,若两种塞孔孔径相差1.5mm时,则无论是否阻焊两面覆盖均採用此工艺;②阻焊塞孔套用于BGA塞孔处阻焊两面覆盖的板;③整平前后的塞孔用于厚铜箔板或其他特殊需要的板。所塞钻孔尺寸有0.25、0.30、0.35、0.40、0.45、0.50、0.55mm共7种。# T4 Z |" c4 R在CAM製作中BGA应做怎样处理呢?' e+ d; L5 [4 h( Z, O# _3 j# F一、外层线路BGA处的製作- Z4 Q8 p, g6 P6 ~: F1 p" X% a( c在客户资料未作处理前,先对其进行全面了解,BGA的规格、客户设计焊盘的大小、阵列情况、BGA下过孔的大小、孔到BGA焊盘的距离,铜厚要求为1~1.5盎司的PCB板,除了特定客户的製作按其验收要求做相应补偿外,其余客户若生产中採用掩孔蚀刻工艺时一般补偿2mil,採用图电工艺则补偿2.5mil,规格为31.5mil BGA的不採用图电工艺加工;当客户所设计BGA到过孔距离小于8.5mil,而BGA下过孔又不居中时,可选用以下方法( i H! i. o/ Q7 M可参照BGA规格、设计焊盘大小对应客户所设计BGA位置做一个标準BGA阵列,再以其为基準将需校正的BGA及BGA下过孔进行拍正,拍过之后要与原未拍前备份的层次对比检查一下拍正前后的效果,如果BGA焊盘前后偏差较大,则不可採用,只拍BGA下过孔的位置。! W, {+ f/ x2 G二、BGA阻焊製作 8 A) ^/ ?% b. D7 T: c1、BGA表面贴阻焊开窗与阻焊最佳化值一样其单边开窗範围为1.25~3mil,阻焊距线条(或过孔焊盘)间距大于等于1.5mil; ( p/ s: ^5 @, Z' z2、BGA塞孔模板层及垫板层的处理! A" N( l% Q& V2 F$ y. Q4 L①製做2MM层以线路层BGA焊盘拷贝出为另一层2MM层并将其处理为2MM範围的方形体,2MM中间不可有空白、缺口(如有客户要求以BGA处字元框为塞孔範围,则以BGA处字元框为2MM範围做同样处理),做好2MM实体后要与字元层BGA处字元框对比一下,二者取较大者为2MM层。) T$ f4 e- X; U% l0 Q②塞孔层(JOB.bga)以孔层碰2MM层(用面板中Actionsàreference selection功能参考2MM层进行选择),参数Mode选Touch,将BGA 2MM範围内需塞的孔拷贝到塞孔层,并命名为JOB.bga(注意,如客户要求BGA处测试孔不作塞孔处理,则需将测试孔选出,BGA测试孔特徵为阻焊两面开满窗或单面开窗)。7 c7 z" j" b. e3 Y7 g e5 ]③拷贝塞孔层为另一垫板层(JOB.sdb)。 A8 _; t2 B- G% R. y④按BGA塞孔档案调整塞孔层孔径和垫板层孔径。4 \ e, {1 D! e6 r/ v [三、BGA对应堵孔层、字元层处理5 j C% S, w3 }' w g①需要塞孔的地方,堵孔层两面均不加挡点;) p2 m1 t2 x/ U) \ G4 s②字元层相对塞孔处过孔允许白油进孔。5 K1 {0 M# G5 |7 y M' y以上步骤完成后,BGA CAM的单板製作就完成了,这只是BGA CAM的单板製作情况,其实由于电子信息产品的日新月异,PCB行业的激烈竞争,关于BGA塞孔的製作规程是经常在更换,并不断有新的突破。这每次的突破,使产品又上一个台阶,更适应市场变化的要求。我们期待更优越的关于BGA塞孔或其它的工艺出炉。
RW-6250U
上一篇:Lareine 下一篇:Ingenious media

Copyright@2015-2025 www.aizhengw.cn 癌症网版板所有