金属-氧化物半导体场效应电晶体,简称金氧半场效电晶体(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效电晶体(field-effect transistor)。MOSFET依照其“通道”(工作载流子)的极性不同,可分为“N型”与“P型” 的两种类型,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS、PMOS等。
基本介绍
- 中文名金属-氧化层 半导体场效电晶体
- 外文名Metal-Oxide-Semiconductor Field-Effect Transistor
- 核心金属—氧化层—半导体电容
- 发明时间1960年
- 发明人D. Kahng和 Martin Atalla
- 发明机构贝尔实验室(Bell Lab.)
结构
图1是典型平面N沟道增强型NMOSFET的剖面图。它用一块P型硅半导体材料作衬底,在其面上扩散了两个N型区,再在上面覆盖一层二氧化硅(SiO2)绝缘层,在N区上方用腐蚀的方法做成两个孔,用金属化的方法分别在绝缘层上及两个孔内做成三个电极G(栅极)、S(源极)及D(漏极),如图所示。从图1中可以看出栅极G与漏极D及源极S是绝缘的,D与S之间有两个PN结。一般情况下,衬底与源极在内部连线在一起,这样,相当于D与S之间有一个PN结。
图1是常见的N沟道增强型MOSFET的基本结构图。为了改善某些参数的特性,如提高工作电流、提高工作电压、降低导通电阻、提高开关特性等有不同的结构及工艺,构成所谓VMOS、DMOS、TMOS等结构。虽然有不同的结构,但其工作原理是相同的,这里就不一一介绍了。
工作原理
要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。如图2所示。
若先不接VGS(即VGS=0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,漏源之间不能导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极性相反,所以称为“反型层”,这反型层有可能将漏与源的两N型区连线起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它将被P型衬底中的空穴中和,在这种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压称为开启电压(或称阈值电压、门限电压),用符号VT表示(一般规定在ID=10uA时的VGS作为VT)。当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线性关係,如图3所示。此曲线称为转换特性。在一定範围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。由于这种结构在VGS=0时,ID=0,称这种MOSFET为增强型。另一类MOSFET,在VGS=0时也有一定的ID(称为IDSS),这种MOSFET称为耗尽型。它的结构如图4所示,它的转移特性如图5所示。VP为夹断电压(ID=0)。
耗尽型与增强型主要区别是在製造SiO2绝缘层中有大量的正离子,使在P型衬底的界面上感应出较多的负电荷,即在两个N型区中间的P型硅内形成一N型硅薄层而形成一导电沟道,所以在VGS=0时,有VDS作用时也有一定的ID(IDSS);当VGS有电压时(可以是正电压或负电压),改变感应的负电荷数量,从而改变ID的大小。VP为ID=0时的-VGS,称为夹断电压。
详细信息
概述
从名字表面的角度来看MOSFET的命名,事实上会让人得到错误的印象。因为MOSFET里代表“metal”的第一个字母M在当下大部分同类的元件里是不存在的。早期MOSFET的栅极(gate electrode)使用金属作为其材料,但随着半导体技术的进步,随后MOSFET栅极使用多晶硅取代了金属。在处理器中,多晶硅栅已经不是主流技术,从英特尔採用45纳米线宽的P1266处理器开始,栅极开始重新使用金属。。
MOSFET在概念上属于“绝缘栅极场效电晶体”(Insulated-Gate Field Effect Transistor,IGFET),而IGFET的栅极绝缘层有可能是其他物质而非MOSFET使用的氧化层。有些人在提到拥有多晶硅栅极的场效电晶体元件时比较喜欢用IGFET,这些IGFET多半指的是MOSFET。
MOSFET里的氧化层位于其通道上方,依照其操作电压的不同,这层氧化物的厚度仅有数十至数百埃(Å)不等,通常材料是二氧化硅(silicon dioxide,SiO2),不过有些新的进阶製程已经可以使用如氮氧化硅(silicon oxynitride,SiON)做为氧化层之用。
今日半导体元件的材料通常以硅(silicon)为首选,也有些半导体公司发展出使用其他半导体材料的製程,当中最着名的例如IBM使用硅与锗(germanium)的混合物所发展的硅锗製程(silicon-germanium process,SiGe process)。而可惜的是很多拥有良好电性的半导体材料,如砷化镓(gallium arsenide,GaAs),因为无法在表面长出品质够好的氧化层,所以无法用来製造MOSFET元件。
当一个够大的电位差施于MOSFET的栅极与源极(source)之间时,电场会在氧化层下方的半导体表面形成感应电荷,而这时所谓的“反型层”(inversion channel)就会形成。通道的极性与其漏极(drain)与源极相同,假设漏极和源极是N型,那幺通道也会是N型。通道形成后,MOSFET即可让电流通过,而依据施于栅极的电压值不同,可由MOSFET的通道流过的电流大小亦会受其控制而改变。
电路符号
常用于MOSFET的电路符号有很多种变化,最常见的设计是以一条直线代表通道,两条和通道垂直的线代表源极与漏极,左方和通道平行而且较短的线代表栅极,如下图所示。有时也会将代表通道的直线以破折线代替,以区分增强型MOSFET(enhancement mode MOSFET)或是耗尽型MOSFET(depletion mode MOSFET)又分为NMOSFET和PMOSFET两种类型,电路符号如图所示(箭头的方向不同)。
由于积体电路晶片上的MOSFET为四端元件,所以除了栅极、源极、漏极外,尚有一基极(Bulk或是Body)。MOSFET电路符号中,从通道往右延伸的箭号方向则可表示此元件为N型或是P型的MOSFET。箭头方向永远从P端指向N端,所以箭头从通道指向基极端的为P型的MOSFET,或简称PMOS(代表此元件的通道为P型);反之若箭头从基极指向通道,则代表基极为P型,而通道为N型,此元件为N型的MOSFET,简称NMOS。在一般分散式MOSFET元件(discrete device)中,通常把基极和源极接在一起,故分散式MOSFET通常为三端元件。而在积体电路中的MOSFET通常因为使用同一个基极(common bulk),所以不标示出基极的极性,而在PMOS的栅极端多加一个圆圈以示区别(这是国外符号,国标符号见图)。
这样,MOSFET就有了4钟类型P沟道增强型,P沟道耗尽型,N沟道增强型,N沟道耗尽型,它们的电路符号和套用特性曲线如下图所示。
操作原理
MOSFET的核心金属—氧化层—半导体电容
金属—氧化层—半导体结构MOSFET在结构上以一个金属—氧化层—半导体的电容为核心(如前所述,今日的MOSFET多半以多晶硅取代金属作为其栅极材料),氧化层的材料多半是二氧化硅,其下是作为基极的硅,而其上则是作为栅极的多晶硅。这样子的结构正好等于一个电容器(capacitor),氧化层扮演电容器中介电质(dielectric material)的角色,而电容值由氧化层的厚度与二氧化硅的介电常数(dielectric constant)来决定。栅极多晶硅与基极的硅则成为MOS电容的两个端点。
当一个电压施加在MOS电容的两端时,半导体的电荷分布也会跟着改变。考虑一个P型的半导体(空穴浓度为NA)形成的MOS电容,当一个正的电压VGB施加在栅极与基极端(如图)时,空穴的浓度会减少,电子的浓度会增加。当VGB够强时,接近栅极端的电子浓度会超过空穴。这个在P型半导体中,电子浓度(带负电荷)超过空穴(带正电荷)浓度的区域,便是所谓的反转层(inversion layer)。
MOS电容的特性决定了MOSFET的操作特性,一个完整的MOSFET结构还需要一个提供多数载流子(majority carrier)的源极以及接受这些多数载流子的漏极。
结构
一个NMOS电晶体的立体截面图左图是一个N型 MOSFET(以下简称NMOS)的截面图。如前所述,MOSFET的核心是位于中央的MOS电容,而左右两侧则是它的源极与漏极。源极与漏极的特性必须同为N型(即NMOS)或是同为P型(即PMOS)。右图NMOS的源极与漏极上标示的“N+”代表着两个意义⑴N代表掺杂(doped)在源极与漏极区域的杂质极性为N;⑵“+”代表这个区域为高掺杂浓度区域(heavily doped region),也就是此区的电子浓度远高于其他区域。在源极与漏极之间被一个极性相反的区域隔开,也就是所谓的基极(或称基体)区域。如果是NMOS,那幺其基体区的掺杂就是P型。反之对PMOS而言,基体应该是N型,而源极与漏极则为P型(而且是重(读作zhong)掺杂的P+)。基体的掺杂浓度不需要如源极或漏极那幺高,故在右图中没有“+”。
对这个NMOS而言,真正用来作为通道、让载流子通过的只有MOS电容正下方半导体的表面区域。当一个正电压施加在栅极上,带负电的电子就会被吸引至表面,形成通道,让N型半导体的多数载流子—电子可以从源极流向漏极。如果这个电压被移除,或是放上一个负电压,那幺通道就无法形成,载流子也无法在源极与漏极之间流动。
假设操作的对象换成PMOS,那幺源极与漏极为P型、基体则是N型。在PMOS的栅极上施加负电压,则半导体上的空穴会被吸引到表面形成通道,半导体的多数载流子—空穴则可以从源极流向漏极。假设这个负电压被移除,或是加上正电压,那幺通道无法形成,一样无法让载流子在源极和漏极间流动。
特别要说明的是,源极在MOSFET里的意思是“提供多数载流子的来源”。对NMOS而言,多数载流子是电子;对PMOS而言,多数载流子是空穴。相对的,漏极就是接受多数载流子的端点。
主要参数
场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数
1、IDSS—饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流。
2、UP—夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。
3、UT—开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。
4、gM—跨导。是表示栅源电压UGS—对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值。gM是衡量场效应管放大能力的重要参数。
5、BUDS—漏源击穿电压。是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。
6、PDSM—最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。
7、IDSM—最大漏源电流。是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过IDSM 。
1、IDSS—饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流。
2、UP—夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。
3、UT—开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。
4、gM—跨导。是表示栅源电压UGS—对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值。gM是衡量场效应管放大能力的重要参数。
5、BUDS—漏源击穿电压。是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。
6、PDSM—最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。
7、IDSM—最大漏源电流。是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过IDSM 。
型号命名
中国命名法
有两种命名方法。
场效应管通常有下列两种命名方法。
第一种命名方法是使用“中国半导体器件型号命名法”的第3、第4和第5部分来命名,其中的第3部分用字母CS表示场效应管,第4部分用阿拉伯数字表示器件序号,第5部分用汉语拼音字母表示规格号。例如CS2B、CS14A、CS45G等。
第二种命名方法与双极型三极体相同,第一位用数字代表电极数;第二位用字母代表极性(其中D是N沟道,C是P沟道);第三位用字母代表类型(其中J代表结型场效应管,O代表绝缘栅场效应管)。例如,3DJ6D是N沟道结型场效应三极体,3D06C是N沟道绝缘栅型场效应三极体。
日本命名法
日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下
第一部分用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。
第二部分日本电子工业协会JEIA注册标誌。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。
第三部分用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控硅、G-N控制极可控硅、H-N基极单结电晶体、J-P沟道场效应管、K-N沟道场效应管、M-双向可控硅。
第四部分用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从“11”开始,表示在日本电子工业协会JEIA登记的顺序号;不同公司的性能相同的器件可以使用同一顺序号;数字越大,越是近期产品。
第五部分用字母表示同一型号的改进型产品标誌。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。
第一部分用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。
第二部分日本电子工业协会JEIA注册标誌。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。
第三部分用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控硅、G-N控制极可控硅、H-N基极单结电晶体、J-P沟道场效应管、K-N沟道场效应管、M-双向可控硅。
第四部分用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从“11”开始,表示在日本电子工业协会JEIA登记的顺序号;不同公司的性能相同的器件可以使用同一顺序号;数字越大,越是近期产品。
第五部分用字母表示同一型号的改进型产品标誌。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。
如2SK134为N沟道MOSFET,2SJ49为P沟道MOSFET。
套用优势
1、场效应电晶体是电压控制元件,而双极结型电晶体是电流控制元件。在只允许从取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用双极电晶体。
2、有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比双极电晶体好。
3、场效应管是利用多数载流子导电,所以称之为单极型器件,而双极结型电晶体是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。
4、场效应管能在很小电流和很低电压的条件下工作,而且它的製造工艺可以很方便地把很多场效应管集成在一块硅片上,场效应管在大规模积体电路中得到了广泛的套用。
MOSFET在1960年由贝尔实验室(Bell Lab.)的D. Kahng和 Martin Atalla实作成功,这种元件的操作原理和1947年萧克莱(William Shockley)等人发明的双载流子结型电晶体(Bipolar Junction Transistor,BJT)截然不同,且因为製造成本低廉与使用面积较小、高整合度的优势,在大型积体电路(Large-Scale Integrated Circuits,LSI)或是超大型积体电路(Very Large-Scale Integrated Circuits,VLSI)的领域里,重要性远超过BJT。
由于MOSFET元件的性能逐渐提升,除了传统上套用于诸如微处理器、微控制器等数位信号处理的场合上,也有越来越多模拟信号处理的积体电路可以用MOSFET来实现,以下分别介绍这些套用。
数字电路
数字科技的进步,如微处理器运算效能不断提升,带给深入研发新一代MOSFET更多的动力,这也使得MOSFET本身的操作速度越来越快,几乎成为各种半导体主动元件中最快的一种。MOSFET在数字信号处理上最主要的成功来自CMOS逻辑电路的发明,这种结构最大的好处是理论上不会有静态的功率损耗,只有在逻辑门(logic gate)的切换动作时才有电流通过。CMOS逻辑门最基本的成员是CMOS反相器(inverter),而所有CMOS逻辑门的基本操作都如同反相器一样,在逻辑转换的瞬间同一时间内必定只有一种电晶体(NMOS或是PMOS)处在导通的状态下,另一种必定是截止状态,这使得从电源端到接地端不会有直接导通的路径,大量节省了电流或功率的消耗,也降低了积体电路的发热量。
MOSFET在数字电路上套用的一大优势是对直流(DC)信号而言,MOSFET的栅极端阻抗为无限大(等效于开路),也就是理论上不会有电流从MOSFET的栅极端流向电路里的接地点,而是完全由电压控制栅极的形式。这让MOSFET和他们最主要的竞争对手BJT相较之下更为省电,而且也更易于驱动。在CMOS逻辑电路里,除了负责驱动晶片外负载(off-chip load)的驱动器(driver)外,每一级的逻辑门都只要面对同样是MOSFET的栅极,如此一来较不需考虑逻辑门本身的驱动力。相较之下,BJT的逻辑电路(例如最常见的TTL)就没有这些优势。MOSFET的栅极输入电阻无限大对于电路设计工程师而言亦有其他优点,例如较不需考虑逻辑门输出端的负载效应(loading effect)。
模拟电路
有一段时间,MOSFET并非模拟电路设计工程师的首选,因为模拟电路设计重视的性能参数,如电晶体的转导(transconductance)或是电流的驱动力上,MOSFET不如BJT来得适合模拟电路的需求。随着MOSFET技术的不断演进,今日的CMOS技术也已经可以符合很多模拟电路的规格需求。再加上MOSFET因为结构的关係,没有BJT的一些致命缺点,如热破坏(thermal runaway)。,MOSFET线上性区的压控电阻特性亦可在积体电路里用来取代传统的多晶硅电阻(poly resistor),或是MOS电容本身可以用来取代常用的多晶硅—绝缘体—多晶硅电容(PIP capacitor),甚至在适当的电路控制下可以表现出电感(inductor)的特性,这些好处都是BJT很难提供的。也就是说,MOSFET除了扮演原本电晶体的角色外,也可以用来作为模拟电路中大量使用的被动元件(passive device)。这样的优点让採用MOSFET实现模拟电路不但可以满足规格上的需求,还可以有效缩小晶片的面积,降低生产成本。
随着半导体製造技术的进步,对于整合更多功能至单一晶片的需求也跟着大幅提升,此时用MOSFET设计模拟电路的一个优点也随之浮现。为了减少在印刷电路板(Printed Circuit Board,PCB)上使用的积体电路数量、减少封装成本与缩小系统的体积,很多原本独立的类比晶片与数位晶片被整合至同一个晶片内。MOSFET原本在数位积体电路上就有很大的竞争优势,在类比积体电路上也大量採用MOSFET之后,把这两种不同功能的电路整合起来的困难度也显着的下降。像是某些混合信号电路(Mixed-signal circuits),如类比/数位转换器(Analog-to-Digital Converter,ADC),也得以利用MOSFET技术设计出效能更好的产品。
还有一种整合MOSFET与BJT各自优点的製程技术BiCMOS(Bipolar-CMOS)也越来越受欢迎。BJT元件在驱动大电流的能力上仍然比一般的CMOS优异,在可靠度方面也有一些优势,例如不容易被“静电放电”(ESD)破坏。所以很多需要复噪声号处理以及强大电流驱动能力的积体电路产品会使用BiCMOS技术来製作。
尺寸缩放
过去数十年来,MOSFET的尺寸不断地变小。早期的积体电路MOSFET製程里,通道长度约在几个微米(micrometer)的等级。到了今日的积体电路製程,这个参数已经缩小了几十倍甚至超过一百倍。2006年初,Intel开始以65纳米(nanometer)的技术来製造新一代的微处理器,实际的元件通道长度可能比这个数字还小一些。至90年代末,MOSFET尺寸不断缩小,让积体电路的效能大大提升,而从历史的角度来看,这些技术上的突破和半导体製程的进步有着密不可分的关係。
为何要把MOSFET的尺寸缩小
基于以下几个理由,我们希望MOSFET的尺寸能越小越好。第一,越小的MOSFET象徵其通道长度减少,让通道的等效电阻也减少,可以让更多电流通过。虽然通道宽度也可能跟着变小而让通道等效电阻变大,如果能降低单位电阻的大小,那幺这个问题就可以解决。,MOSFET的尺寸变小意味着栅极面积减少,如此可以降低等效的栅极电容。,越小的栅极通常会有更薄的栅极氧化层,这可以让前面提到的通道单位电阻值降低。不过这样的改变会让栅极电容反而变得较大,和减少的通道电阻相比,获得的好处仍然多过坏处,而MOSFET在尺寸缩小后的切换速度也会因为上面两个因素加总而变快。第三个理由是MOSFET的面积越小,製造晶片的成本就可以降低,在同样的封装里可以装下更高密度的晶片。一片积体电路製程使用的晶圆尺寸是固定的,所以如果晶片面积越小,同样大小的晶圆就可以产出更多的晶片,于是成本就变得更低了。
虽然MOSFET尺寸缩小可以带来很多好处,但也有很多负面效应伴随而来。
MOSFET的尺寸缩小后出现的困难
把MOSFET的尺寸缩小到一微米以下对于半导体製程而言是个挑战,不过新挑战多半来自尺寸越来越小的MOSFET元件所带来过去不曾出现的物理效应。
次临限传导
由于MOSFET栅极氧化层的厚度也不断减少,所以栅极电压的上限也随之变少,以免过大的电压造成栅极氧化层崩溃(breakdown)。为了维持同样的性能,MOSFET的临界电压也必须降低,这也造成了MOSFET越来越难以完全关闭。也就是说,足以造成MOSFET通道区发生弱反转的栅极电压会比从前更低,于是所谓的次临限电流(subthreshold current)造成的问题会比过去更严重,特别是今日的积体电路晶片所含有的电晶体数量剧增,在某些VLSI的晶片,次临限传导造成的功率消耗竟然占了总功率消耗的一半以上。
不过反过来说,也有些电路设计会因为MOSFET的次临限传导得到好处,例如需要较高的转导/电流转换比(transconductance-to-current ratio)的电路里,利用次临限传导的MOSFET来达成目的的设计也颇为常见。
晶片内部连线导线的寄生电容效应
传统上,CMOS逻辑门的切换速度与其元件的栅极电容有关。当栅极电容随着MOSFET尺寸变小而减少,同样大小的晶片上可容纳更多电晶体时,连线这些电晶体的金属导线间产生的寄生电容效应就开始主宰逻辑门的切换速度。如何减少这些寄生电容,成了晶片效率能否向上突破的关键之一。
晶片发热量增加
当晶片上的电晶体数量大幅增加后,有一个无法避免的问题也跟着发生了,那就是晶片的发热量也大幅增加。一般的积体电路元件在高温下操作可能会导致切换速度受到影响,或是导致可靠度与寿命的问题。在一些发热量非常高的积体电路晶片如微处理器,需要使用外加的散热系统来缓和这个问题。
在功率电晶体(Power MOSFET)的领域里,通道电阻常常会因为温度升高而跟着增加,这样也使得在元件中pn-接面(pn-junction)导致的功率损耗增加。假设外置的散热系统无法让功率电晶体的温度保持在够低的水平,很有可能让这些功率电晶体遭到热破坏(thermal runaway)的命运。
栅极氧化层漏电流增加
栅极氧化层随着MOSFET尺寸变小而越来越薄,主流的半导体製程中,甚至已经做出厚度仅有1.2纳米的栅极氧化层,大约等于5个原子叠在一起的厚度而已。在这种尺度下,所有的物理现象都在量子力学所规范的世界内,例如电子的穿隧效应(tunneling effect)。因为穿隧效应,有些电子有机会越过氧化层所形成的位能障壁(potential barrier)而产生漏电流,这也是今日积体电路晶片功耗的来源之一。
为了解决这个问题,有一些介电常数比二氧化硅更高的物质被用在栅极氧化层中。例如铪(Hafnium)和锆(Zirconium)的金属氧化物(二氧化铪、二氧化锆)等高介电常数的物质均能有效降低栅极漏电流。栅极氧化层的介电常数增加后,栅极的厚度便能增加而维持一样的电容大小。而较厚的栅极氧化层又可以降低电子透过穿隧效应穿过氧化层的机率,进而降低漏电流。不过利用新材料製作的栅极氧化层也必须考虑其位能障壁的高度,因为这些新材料的传导带(conduction band)和价带(valence band)和半导体的传导带与价带的差距比二氧化硅小(二氧化硅的传导带和硅之间的高度差约为8ev),所以仍然有可能导致栅极漏电流出现。
製程变异更难掌控
现代的半导体製程工序複杂而繁多,任何一道製程都有可能造成积体电路晶片上的元件产生些微变异。当MOSFET等元件越做越小,这些变异所占的比例就可能大幅提升,进而影响电路设计者所预期的效能,这样的变异让电路设计者的工作变得更为困难。
MOSFET的栅极材料
理论上MOSFET的栅极应该儘可能选择电性良好的导体,多晶硅在经过重(读作zhong)掺杂之后的导电性可以用在MOSFET的栅极上,并非完美的选择。MOSFET使用多晶硅作为的理由如下
⒈ MOSFET的临界电压(threshold voltage)主要由栅极与通道材料的功函式(work function)之间的差异来决定,而因为多晶硅本质上是半导体,所以可以藉由掺杂不同极性的杂质来改变其功函式。更重要的是,因为多晶硅和底下作为通道的硅之间能隙(bandgap)相同,在降低PMOS或是NMOS的临界电压时可以藉由直接调整多晶硅的功函式来达成需求。反过来说,金属材料的功函式并不像半导体那幺易于改变,如此一来要降低MOSFET的临界电压就变得比较困难。而且如果想要降低PMOS和NMOS的临界电压,将需要两种不同的金属分别做其栅极材料,对于製程又是一个很大的变数。
⒉ 硅—二氧化硅接面经过多年的研究,已经证实这两种材料之间的缺陷(defect)是相对而言比较少的。反之,金属—绝缘体接面的缺陷多,容易在两者之间形成很多表面能阶,大为影响元件的特性。
⒊ 多晶硅的融点比大多数的金属高,而在现代的半导体製程中习惯在高温下沉积栅极材料以增进元件效能。金属的融点低,将会影响製程所能使用的温度上限。
不过多晶硅虽然在过去二十年是製造MOSFET栅极的标準,但也有若干缺点使得未来仍然有部份MOSFET可能使用金属栅极,这些缺点如下
⒈ 多晶硅导电性不如金属,限制了信号传递的速度。虽然可以利用掺杂的方式改善其导电性,但成效仍然有限。有些融点比较高的金属材料如钨(Tungsten)、钛(Titanium)、钴(Cobalt)或是镍(Nickel)被用来和多晶硅製成合金。这类混合材料通常称为金属硅化物(silicide)。加上了金属硅化物的多晶硅栅极有着比较好的导电特性,而且又能够耐受高温製程。因为金属硅化物的位置是在栅极表面,离通道区较远,所以也不会对MOSFET的临界电压造成太大影响。
在栅极、源极与漏极都镀上金属硅化物的製程称为“自我对準金属硅化物製程”(Self-Aligned Silicide),通常简称salicide製程。
⒉ 当MOSFET的尺寸缩的非常小、栅极氧化层也变得非常薄时,例如编辑此文时最新製程可以把氧化层缩到一纳米左右的厚度,一种过去没有发现的现象也随之产生,这种现象称为“多晶硅耗尽”。当MOSFET的反转层形成时,有多晶硅耗尽现象的MOSFET栅极多晶硅靠近氧化层处,会出现一个耗尽层(depletion layer),影响MOSFET导通的特性。要解决这种问题,金属栅极是最好的方案。可行的材料包括钽(Tantalum)、钨、氮化钽(Tantalum Nitride),或是氮化钛(Titalium Nitride)。这些金属栅极通常和高介电常数物质形成的氧化层一起构成MOS电容。一种解决方案是将多晶硅完全的合金化,称为FUSI(FUlly-SIlicide polysilicon gate)製程。
各种常见的MOSFET技术
双栅极MOSFET
双栅极(dual-gate)MOSFET通常用在射频(Radio Frequency,RF)积体电路中,这种MOSFET的两个栅极都可以控制电流大小。在射频电路的套用上,双栅极MOSFET的第二个栅极大多数用来做增益、混频器或是频率转换的控制。
耗尽型MOSFET
一般而言,耗尽型(depletion mode)MOSFET比前述的增强型(enhancement mode)MOSFET少见。耗尽型MOSFET在製造过程中改变掺杂到通道的杂质浓度,使得这种MOSFET的栅极就算没有加电压,通道仍然存在。如果想要关闭通道,则必须在栅极施加负电压。耗尽型MOSFET最大的套用是在“常闭型”(normally-off)的开关,而相对的,加强式MOSFET则用在“常开型”(normally-on)的开关上。
NMOS逻辑
同样驱动能力的NMOS通常比PMOS所占用的面积小,如果只在逻辑门的设计上使用NMOS的话也能缩小晶片面积。不过NMOS逻辑虽然占的面积小,却无法像CMOS逻辑一样做到不消耗静态功率,在1980年代中期后已经渐渐退出市场。
功率MOSFET
功率电晶体单元的截面图。通常一个市售的功率电晶体都包含了数千个这样的单元。主条目功率电晶体
功率MOSFET和前述的MOSFET元件在结构上就有着显着的差异。一般积体电路里的MOSFET都是平面式(planar)的结构,电晶体内的各端点都离晶片表面只有几个微米的距离。而所有的功率元件都是垂直式(vertical)的结构,让元件可以承受高电压与高电流的工作环境。一个功率MOSFET能耐受的电压是杂质掺杂浓度与N型磊晶层(epitaxial layer)厚度的函式,而能通过的电流则和元件的通道宽度有关,通道越宽则能容纳越多电流。对于一个平面结构的MOSFET而言,能承受的电流以及崩溃电压的多寡都和其通道的长宽大小有关。对垂直结构的MOSFET来说,元件的面积和其能容纳的电流成大约成正比,磊晶层厚度则和其崩溃电压成正比。
功率MOSFET的工作原理
截止漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。
导电在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子—电子吸引到栅极下面的P区表面
当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。
值得一提的是採用平面式结构的功率MOSFET也并非不存在,这类元件主要用在高级的音响放大器中。平面式的功率MOSFET在饱和区的特性比垂直结构的MOSFET更好。垂直式功率MOSFET则取其导通电阻(turn-on resistance)非常小的优点,多半用来做开关切换之用。
DMOS
DMOS是双重扩散MOSFET(double-Diffused MOSFET)的缩写,它主要用于高压,属于高压MOS管範畴。
以MOSFET实现模拟开关
MOSFET在导通时的通道电阻低,而截止时的电阻近乎无限大,所以适合作为模拟信号的开关(信号的能量不会因为开关的电阻而损失太多)。MOSFET作为开关时,其源极与漏极的分别和其他的套用是不太相同的,因为信号可以从MOSFET栅极以外的任一端进出。对NMOS开关而言,电压最负的一端就是源极,PMOS则正好相反,电压最正的一端是源极。MOSFET开关能传输的信号会受到其栅极—源极、栅极—漏极,以及漏极到源极的电压限制,如果超过了电压的上限可能会导致MOSFET烧毁。
MOSFET开关的套用範围很广,举凡需要用到取样持有电路(sample-and-hold circuits)或是截波电路(chopper circuits)的设计,例如类比数位转换器(A/D converter)或是切换电容滤波器(switch-capacitor filter)上都可以见到MOSFET开关的蹤影。
单一MOSFET开关
当NMOS用来做开关时,其基极接地,栅极为控制开关的端点。当栅极电压减去源极电压超过其导通的临界电压时,此开关的状态为导通。栅极电压继续升高,则NMOS能通过的电流就更大。NMOS做开关时操作线上性区,因为源极与漏极的电压在开关为导通时会趋向一致。
PMOS做开关时,其基极接至电路里电位最高的地方,通常是电源。栅极的电压比源极低、超过其临界电压时,PMOS开关会打开。
NMOS开关能容许通过的电压上限为(Vgate-Vthn),而PMOS开关则为(Vgate+Vthp),这个值通常不是信号原本的电压振幅,也就是说单一MOSFET开关会有让信号振幅变小、信号失真的缺点。
双重MOSFET(CMOS)开关
为了改善前述单一MOSFET开关造成信号失真的缺点,于是使用一个PMOS加上一个NMOS的CMOS开关成为目前最普遍的做法。CMOS开关将PMOS与NMOS的源极与漏极分别连线在一起,而基极的接法则和NMOS与PMOS的传统接法相同。当输入电压在(VDD-Vthn)和(VSS+Vthp)时,PMOS与NMOS都导通,而输入小于(VSS+Vthp)时,只有NMOS导通,输入大于(VDD-Vthn)时只有PMOS导通。这样做的好处是在大部分的输入电压下,PMOS与NMOS皆导通,如果任一边的导通电阻上升,则另一边的导通电阻就会下降,所以开关的电阻几乎可以保持定值,减少信号失真。
对比
Power MOSFET全称功率场效应电晶体。它的三个极分别是源极(S)、漏极(D)和栅极(G)。主要优点热稳定性好、安全工作区大。缺点击穿电压低,工作电流小。IGBT全称绝缘栅双极电晶体,是MOSFET和GTR(功率晶管)相结合的产物。它的三个极分别是集电极(C)、发射极(E)和栅极(G)。特点击穿电压可达1200V,集电极最大饱和电流已超过1500A。由IGBT作为逆变器件的变频器的容量达250kVA以上,工作频率可达20kHz。