Intel x86

生活百科 2023-01-25 18:03生活百科www.aizhengw.cn

Intel x86

x86泛指一系列基于Intel 8086且向后兼容的中央处理器指令集架构。最早的8086处理器于1978年由Intel推出,为16位微处理器。

Intel在早期以80x86这样的数字格式来命名处理器,包括Intel 8086、80186、80286、80386以及80486,由于以“86”作为结尾,其架构被称为“x86”。由于数字并不能作为注册商标,Intel及其竞争者均在新一代处理器使用可注册的名称,如奔腾(Pentium)、酷睿(Core)、锐龙(Ryzen,AMD推出)。

x86的32位架构一般又被称作IA-32,全名为“Intel Architecture, 32-bit”。其64位架构由AMD率先推出,并被称为“AMD64”。之后也被Intel採用,被其称为“Intel 64”。一般也被称作“x86-64”、“x64”。

值得注意的是,Intel也推出过IA-64架构,虽然名字上与“IA-32”相似,但两者完全不兼容,并不属于x86指令集架构家族。

基本介绍

  • 中文名Intel x86
  • 套用行业计算机硬体製造
  • 适用範围晶片处理器
  • 属性晶片运行指令集
  • 製造商Intel

发展历史

x86架构于1978年推出的Intel 8086中央处理器中首度出现,它是从Intel 8008处理器中发展而来的,而8008则是发展自Intel 4004的。8086在三年后为IBM PC所选用,之后x86便成为了个人计算机的标準平台,成为了历来最成功的CPU架构。
其他公司也有製造x86架构的处理器,计有Cyrix(现为VIA所收购)、NEC集团、IBM、IDT以及Transmeta。Intel以外最成功的製造商为AMD,其早先产品Athlon系列处理器的市场份额仅次于Intel Pentium。
8086是16位处理器;直到1985年32位的80386的开发,这个架构都维持是16位。接着一系列的处理器表示了32位架构的细微改进,推出了数种的扩充,直到2003年AMD对于这个架构发展了64位的扩充,并命名为AMD64。后来Intel也推出了与之兼容的处理器,并命名为Intel 64。两者一般被统称为x86-64x64,开创了x86的64位时代。
值得注意的是Intel早在1990年代就与HP合作提出了一种用在安腾系列处理器中的独立的64位架构,这种架构被称为IA-64。IA-64是一种崭新的系统,和x86架构完全没有相似性;不应该把它与x86-64x64弄混。

架构模式

x86架构是重要地可变指令长度的CISC(複杂指令集计算机,Complex Instruction Set Computer)。字组(word, 4位元组)长度的存储器访问允许不对齐存储器地址,字组是以低位位元组在前的顺序储存在存储器中。向前兼容性一直都是在x86架构的发展背后一股驱动力量(设计的需要决定了这项因素而常常导致批评,尤其是来自对手处理器的拥护者和理论界,他们对于一个被广泛认为是是落后设计的架构的持续成功感到不解)。但在较新的微架构中,x86处理器会把x86指令转换为更像RISC的微指令再予执行,从而获得可与RISC比拟的超标量性能,而仍然保持向前兼容。x86架构的处理器一共有四种执行模式,分别是真实模式,保护模式,系统管理模式以及虚拟V86模式。
在这篇简短的文章中出现的指令和暂存器助忆符号的名称,都在Intel档案中有所指定以及使用在 Intel组译器(Assembler)中(和兼容的,比如微软的MASM、Borland的TASM、CAD-UL的as386 等等)。一个以Intel语法指定的指令"mov al, 30h"与AT&T语法的"movb x30, %al"相当,都是会被转译为两个位的机器码"B0 30"(十六进制)。你可以发现在这段程式中的"mov"或 "al",都是原来的Intel助忆符号。如果我们想要的话,我们可以写一个组译器由代码'move immediate byte hexadecimally encoded 30 into low half of the first register'(移动立即值位十六进制编码30到第一个暂存器的低半部位),来产生相同的机器码。,传统上彙编器(Assembler)一直使用Intel的助忆符号。
x86彙编语言会在x86 彙编语言文章中有更详细的讨论。

实时模式

Intel 8086和8088有14个16位暂存器。其中四个(AX, BX, CX, DX)是通用目的(儘管每个暂存器都有附加目的;举个例子只有CX可以被用来当作loop(循环)指令的计数器。)每个暂存器可以被当成两个分开的位元组访问(BX的高位可以被当成BH,低位则可以当成BL)。除了这些暂存器,还有四个区段暂存器(CS、DS、SS、ES)。他们用来产生存储器的绝对地址。还有两个指针暂存器(SP是指向堆叠的底部,BP可以用来指向堆叠或存储器的其它地方)。两个指针暂存器(SI和DI)可以用来指向数组的内部。,有标誌暂存器(包含状态标誌比如进位、溢出、零标誌,等等)。以及IP是用来指向目前运行指令的地址。
在实模式下,存储器的访问是被区段开来。为了得到20位的存储器地址,要将区段的地址往左移动4位,并且加上偏移的地址。,实模式下总共可以定址的空间是2位元组,或者是1MB,于1979年是相当让人印象深刻的象徵。在实模式下有两种定址模式near和far。在 far模式,区段跟偏移都需要被指定;在near模式,只需要偏移模式被指定,而存储器区段是由适当的区段暂存器获得。以数据而言是使用DS暂存器,代码是CS暂存器,堆叠是SS暂存器。举个例子,如果DS是A000h且SI是5677h,DS:SI会指向计忆体的绝对地址DS × 16 + SI = A5677h
在这种架构下,两对不同的区段/偏移可以指向一个相同的绝对地址。如果DS是A111h且SI是4567h,DS:SI会指向跟上一段相同的A5677h。除了duplicity之外,这种架构无法一次拥有4个以上的区段。,CS、DS和SS是为了程式正确功能而必须的,仅仅只有ES可以被用来指向其它的地方。这种模式原本是为了与Intel 8085兼容,导致程式设计师永无止尽的痛苦。
除了以上所说的,8086也拥有8-bit的64K(另一种说法是16-bit的32K)输入输出(en:I/O)空间,以及一个由硬体支持的64K(一个区段)存储器堆叠。只有words(2位元组)可以被推入到堆叠中。堆叠是由存储器的上端往下成长,他的底端是由SS:SP指向。有256箇中断(interrupts),可以由硬体或是软体组成。中断是可以串连在一起,使用堆叠来储存返回被中断的程式地址。

16位保护

Intel 80286可以在不改变任何东西下,支持8086的实模式16位软体,它也支持额外的工作模式称为保护模式,可以将可定址的物理记忆体扩充到16MB,可定址的虚拟记忆体最大到 1GB。这是使用节区暂存器来储存在节区表格中的索引值。处理器中有两个这样的表格,分别为GDT和LDT,每一个可以储存最多8192个节区的描述子,每一个节区可以给予最大到64KB的存储器访问。节区表格提供一个24位的基底地址(base address),可以用此基底地址增加想要的偏移量来创造出一个绝对地址。,每一个节区可以被赋予四种许可权等级中的一种(称为 "rings")。
儘管这个推出的功能是一项进步,他们并没有被广泛地使用,因为保护模式的作业系统无法运行现有的实模式软体。这样的能力只有在随后80386处理器的虚拟86模式中出现。
在,作业系统比如OS/2尝试使用类似桌球的方法,让处理器在保护和实模式间切换。这样都会让计算机变慢且不安全,像是在实模式下的程式可以轻易地使计算机当机。OS/2也定义了限制性的程式设计规则允许"Family API"或"bound"程式可以在实模式或保护模式下运行。这是给原本为保护模式下设计的程式有关,反之则不然。保护模式程式并不支持节区选择子和物理记忆体之间的关係。有时候会错误地相信在16位保护模式下运行实模式的程式,导致IBM必须选择使用Intel保留给BIOS的中断调用。事实上这类的程式使用任意的选择子数值和使用在上面提到的“节区运算”的方式有关。
这个问题也在Windows 3.x上出现。这个推出版本想要在16位保护模式下运行程式,而先前的版本只能在实模式下运行。理论上,如果Windows 1.x或2.x程式是写得“适当”且避免使用节区运算的方式,它就有可能在真实和保护模式两者下运行。Windows程式都会避免节区运算,这是因为Windows实现出软体的虚拟记忆体方式,及当程式不运行时候,搬移存储器中的代码和数据,所以操作绝对地址的方式是很危险的;当程式不运行时,被认为要保持存储器区块的“handles”,这样的handles已经非常相当于保护模式的选择子。在保护模式下的Windows 3.0运行一个旧的程式,会触发一个警告对话盒,建议在实模式下运行Windows(推测还是仍然可以使用扩充存储器,可能是在80386机器用EMM386模拟,它并不被局限于640KB)或是从厂商那更新到新的版本。好的行为之程式可能可以使用特别的工具来避免这样的对话盒。不可能有些GUI程式在16位保护模式下运行,且其它GUI程式在实模式运行,可能是因为这会需要两个分开的环境且会依于前面所提到的处理器在两个模式间的桌球效应。从Windows 3.1版开始,实模式就消失了。

32位保护

Intel 80386推出后,也许是到目前为止x86架构的最大跃进。除了需要值得注意的Intel 80386SX是32位架构但仅只有24位定址(和16位数据汇流排)。除此之外其他架构都是32位 - 所有的暂存器、指令集、输出输入空间和存储器定址。为了能够在后者所说的功能工作,要使用32位扩充的保护模式。不像286,386所有的区段可以使用32位的偏移量,即使存储器空间有使用区段,但也允许应用程式访问超过4GB空间而不需要区段的分隔。,32位保护模式提供分页的支持,是一种让虚拟记忆体得以实现的机制。
没有新的通用暂存器被加入。所有16位的暂存器除了区段暂存器外都扩充为32位。Intel在暂存器的助记符号上加入“E”来表示(扩充的AX变成EAX,SI变成ESI,依此类推)。因为有更多的暂存器数量、指令、和运算单元,机器码的格式也被扩充。为了提供与先前的架构兼容,包含运行码的区段可以被标示为16或是32位的指令集。,特殊的前置符号也可以用来在16位的区段包含32位的脚本,反之亦然。
分页跟区段的存储器访问是为了支持现在多任务作业系统所必须要的。Linux、386BSD、Windows NT和Windows 95都是一开始为386所发展,因为它是第一颗提供可靠地程式分离存储器空间的支持(每个程式拥有自己的定址空间)以及可以在必要的情况下打断他们程式的运行(使用ring,一种x86保护模式下权力分级的名称)。这种386的基本架构变成未来所有x86系列发展的基础。
Intel 80386数学辅助运算处理器也在集成到这个CPU之后的x86系列中,也就是Intel 80486。新的FPU可以帮助浮点数运算,对于科学计算和图形设计是非常重要。

系统管理模式

Intel在80386SL之后引入其x86体系结构。

MMX和之后

1996年Intel的MMX(AMD认为这是矩阵数学扩充Matrix Math Extensions的缩写,但大多数时候都被当成Multi-Media Extension,而Intel从来没有官方宣布过词源)技术出现。儘管这项新的技术得到广泛宣传,但它的精髓是非常简单的MMX定义了八个64位SIMD暂存器,与Intel Pentium处理器的FPU堆叠有相重叠。不幸的是,这些指令无法非常简单地对应到由原来C编译器所产生的脚本中。MMX也只局限于整数的运算。这项技术的缺点导致MMX在它早期的存在有轻微的影响。现今,MMX通常是用在某些2D影片应用程式中。

3DNow!

1997年AMD推出3DNow!,是对于MMX的SIMD的浮点指令增强(针对相同的 MMX 暂存器)。儘管这些也没有解决编译器的难题,但这项技术的推出符合了PC上的3D休闲娱乐应用程式之崛起。3D游戏开发者和3D绘图硬体製造商在AMD的AMD K6和Athlon系列处理器上,使用3DNow!来帮助增加他们的效能。微软后来也在其开发的Direct X7.0中加入针对3DNow!的最佳化,使当时的Athlon处理器在3D游戏效能上全面超过对手 Intel 的Pentium 3处理器。

SSE

在1999年Intel推出SSE指令集,增加了八个新的128-bit暂存器(不跟其他的暂存器重叠使用)。这些指令类似于AMD的3DNow!,主要是增加浮点数运算的SIMD指令。

SSE2

2001年Intel推出SSE2指令集,增加了
完整地补充了整数指令(与MMX相似)到原来的SSE暂存器。 64位的SIMD浮点运算指令到原来的SSE暂存器。 第一个的增加导致MMX几乎是过时可以捨弃的,第二个则允许这些指令可以让传统的编译器现实地产生。

SSE3

于2004年随着Pentium 4处理器的改版Prescott核心推出。SSE3增加特定的存储器和thread-handling指令来提升Intel超执行绪的效能,在科学计算方面也有增强。

SSE4

2007年1月,Intel公开发表使用其45纳米製程"Penryn"晶片家族的PC和伺服器。"Penryn"是这一系列依据英特尔Core微架构之笔记本电脑、台式机和伺服器晶片家族的代号,正式发布时共有16款处理器,除了一款Intel Core 2 Extreme QX9650是针对普通台式机市场外,其余的双核Xeon 5200系列和四核5400系列都是伺服器处理器。基本上Penryn是继Merom之后的缩小版Core 2 Duo,再加上47条新的SSE4指令集等额外配备。SSE4指令集之发表时间为2006年9月的英特尔开发者论坛(IDF,Intel Developer Forum)。
,x86处理器製造厂商AMD也在该公司最新K10架构的Phenom处理器中,加入4条新的SSE4A指令集。注意,SSE4与SSE4A无法彼此兼容。

64位架构

到2002年,由于32位特性的长度,x86的架构开始到达某些设计的极限。这个导致要处理大量的信息储存大于4GB会有困难,像是在资料库或是影片编辑上可以发现。
Intel原本已经决定在64位的时代完全地捨弃x86兼容性,推出新的架构称为IA-64技术作为他的Itanium处理器产品线的基础。IA-64与x86的软体天生不兼容;它使用各种模拟形式来运行x86的软体,不过,以模拟方式来运行的效率十分低下,并且会影响其他程式的运行。
AMD主动把32位x86(或称为IA-32)扩充为64位。它以一个称为AMD64的架构出现(在重命名前也称为x86-64),且以这个技术为基础的第一个产品是单核心的Opteron和Athlon 64处理器家族。由于AMD的64位处理器产品线进入市场,且微软也不愿意为Intel和AMD开发两套不同的64位作业系统,Intel也被迫採纳AMD64指令集且增加某些新的扩充到他们自己的产品,命名为EM64T架构(显然他们不想承认这些指令集是来自它的主要对手),EM64T后来被Intel正式更名为Intel 64。
这是由非Intel的製造商所发起和设计的第一次重大的x86架构升级。也许更重要的,它也是第一次Intel实际上从外部来源接受这项本质的技术。

虚拟

虚拟x86是很困难的,因为它的架构并未达到波佩克与戈德堡虚拟化需求。,有好几个商业的虚拟x86产品,比如VMware和微软的Virtual PC。Intel和AMD两者都有公开宣布未来的x86处理器将会有新的增强来容易达到更有效率的虚拟。Intel针对这项虚拟特性的代号称为"Vanderpool"和"Silvervale";AMD则使用"Pacifica"这个代号。

生产商

有多家公司设计、生产并售卖x86处理器及其兼容产品,其中包括
英特尔(Intel) AMD Chips and TechnologiesCyrix(被VIA收购) IBM IDT 国家半导体(NS,National Semiconductor) 日本电气(NEC) NexGen(被AMD收购) Rise Technology(被硅统技术收购) SGS-Thomson 硅统(SiS) 德州仪器(TI,Texas Instruments) 全美达(Transmeta) 联华电子(UMC) 威盛电子(VIA)。
上一篇:MOOC学院 下一篇:LOGO设计软体

Copyright@2015-2025 www.aizhengw.cn 癌症网版板所有