基元电荷(电学表征字母)

生活百科 2023-01-26 08:56生活百科www.aizhengw.cn

基元电荷(电学表征字母)

e(电学表征字母)一般指本词条

基元电荷,电荷 [diàn hè] 的天然单位,基本物理常量之一,记为e,其值为1.602176634×10^(-19) 库侖。

该物理常量于1910年由美国实验物理学家 R.A.密立根 ( R.A.Millikan,1868~1953 ) 通过油滴实验精确测定,并认证其“基元性”。电子的电荷为(-1)个基元电荷,质子的电荷为(+1)个基元电荷,已发现的全部带电亚原子粒子的电荷都等于基元电荷的整数倍值。

基本介绍

  • 中文名基元电荷、元电荷、基本电荷
  • 外文名Elementary Charge
  • 所属基本物理常量
  • 数值1.602176634×10^-19 库侖
  • 发现人罗伯特·安德鲁·密立根
  • 发现年代1910年
中文名称基元电荷
英文名称Elementary Charge
基元电荷的值在2019年定义为1.602176634×10-19 库侖
基元电荷的质量为0.91×10^-30kg
电子的电荷量与质量的比值,叫做比荷,大小为1.76×10^11C/kg 。
C =Coulomb =库侖。

发现者简介

罗伯特·安德鲁·密立根(Robert Andrews Millikan,1868~1953),美国实验物理学家,由于其在测定电子电荷以及光电效应的出色工作被授予1923年诺贝尔物理学奖。
罗伯特·安德鲁·密立根

个人履历

1868年3月22日生于伊利诺斯州的莫里森,是其父母的第二个儿子。密立根1886年进入俄亥俄州的奥柏森大学(Oberlin College)后,从二年级起被聘在初等物理班担任教员,他很喜爱这个工作,这使他更深入地钻研物理学,甚至在1891年大学毕业后,仍继续在初级物理班讲课两年,由此写成了广泛流传的教材。在大学期间,密立根最喜欢的学科就是希腊语和数学。
年轻时候的密立根
1893年取得硕士学位,同年得到哥伦比亚大学物理系攻读博士学位的奖金。1895年密立根博士毕业,成为哥大物理系建系来毕业的第一位物理学博士。随后他留学德国的柏林和哥廷根大学。1896年回国任教于芝加哥大学。由于教学成绩优异,第二年就升任副教授。在1910年,由于他出色的教学和科研工作,正式提升为正教授。
1921年,密立根离开芝加哥大学,转职到了加州理工学院担任物理系Normal Bridge Laboratory的主任。在那里,他主要研究由一名物理学家维克多-海斯(Victor Hess)发现的从外太空来的射线,密立根证明,这些射线确实来自于外太空,并且命名为“宇宙射线”(Cosmic Rays)。密立根从1921年到1945年退休之前,担任加州理工执行理事会的主席,并在此期间,让加州理工成为全美最优秀的研究型大学之一。
1953年12月19日,由于心脏病发作,密立根死于他在加州的家中,时年85岁。

测定元电荷

密立根以其实验的精确着名。从1907年一开始,他致力于改进威耳逊云雾室中对α粒子电荷的测量甚有成效,得到卢瑟福的肯定。卢瑟福建议他努力防止水滴蒸发。1909年,当他準备好条件使带电云雾在重力与电场力平衡下把电压加到10000伏时,他发现的是云层消散后“有几颗水滴留在机场中”,从而创造出测量电子电荷的平衡水珠法、平衡油滑法,但有人攻击他得到的只是平均值而不是元电荷。1910年,他第三次作了改进,使油滴可以在电场力与重力平衡时上上下下地运动,而且在受到照射时还可看到因电量改变而致的油滴突然变化,从而求出电荷量改变的差值;1913年,他得到电子电荷的数值e =(4.774 ± 0.009)× 10-10 esu ,这样,就从实验上确证了元电荷的存在。他测的精确值最终结束了关于对电子离散性的争论,并使许多物理常数的计算获得较高的精度。

普朗克常量

他的求实、严谨细緻,富有创造性的实验作风也成为物理界的楷模,与此,他还致力于光电效应的研究经过细心认真的观测,1916年,他的实验结果完全肯定了爱因斯坦光电效应方程,并且测出了当时最精确的普朗克常量h的值。由于上述工作,密立根赢得1923年度诺贝尔物理学奖。

元素火花光谱学

他还对电子在强电场作用下逸出金属表面进行了实验研究。他还从事元素火花光谱学的研究工作,测量了紫外线与X射线之间的光谱区,发现了近1000条谱线,波长直到13.66nm)使紫外光谱远超出了当时已知的範围。他对x射线谱的分析工作,导致了乌伦贝克(G.E.Uhlenbeek1900~1974)等人在1925年提出电子自旋理论。

宇宙射线

他在宇宙线方面也做过大量的研究。他提出了“宇宙线”这个名称。研究了宇宙粒子的轨道及其曲率,发现了宇宙线中的“α粒子、高速电子、质子、中子、正电子和V量子。改变了过去“宇宙线是光子”的观念。尤其是他用强磁场中的云室对宇宙线进行实验研究,导致他的学生安德森在1932年发现正电子。

油滴实验

实验步骤

密立根油滴实验,美国物理学家密立根所做的测定电子电荷的实验。1907-1913年密立根用在电场和重力场地中运动的带电油滴进行实验,发现所有油滴所带的电量均是某一最小电荷的整数倍,该最小电荷值就是电子电荷。用喷雾器将油滴喷入电容器两块水平的平行电极板之间时,油滴经喷射后,一般都是带电的。在不加电场的情况下,小油滴受重力作用而降落,当重力与空气的浮力和粘滞阻力平衡时,它便作匀速下降,它们之间的关係是mg=F1+B(1),式中mg──油滴受的重力,F1──空气的粘滞阻力,B──空气的浮力。
“油桶实验”的实验仪器
令δ、ρ分别表示油滴和空气的密度;a为油滴的半径;η为空气的粘滞係数;vg为油滴匀速下降速度。油滴受的重力为 mg=4/3πa^3δg(注a^3为a的3次方,一下均是),空气的浮力mg=4/3πa^3ρg,空气的粘滞阻力f1=6πηaVg (流体力学的斯托克斯定律,Vg表示v下角标g)。于是(1)式变为4/3πa^3δg=6πηaVg+4/3πa^3ρg,可得出油滴的半径a=3(ηVg/2g(δ-ρ))^1/2(2),当平行电极板间加上电场时,设油滴所带电量为q,它所受到的静电力为qE,E为平行极板间的电场强度,E=U/d,U为两极板间的电势差,d为两板间的距离。适当选择电势差U的大小和方向,使油滴受到电场的作用向上运动,以vE表示上升的速度。当油滴匀速上升时,可得到如下关係式F2+m=qE+B(3),式中F2为油滴上升速度为Ve时空气的粘滞阻力F2=6πηaVe,由(1)、(3)式得到油滴所带电量q为q=(F1+F2)/E=6πηad/(Vg+Ve)(4)。(4)式表明,按(2)式求出油滴的半径a后,由测定的油滴不加电场时下降速度vg和加上电场时油滴匀速上升的速度vE,就可以求出所带的电量q。注意上述公式的推导过程中都是对同一个油滴而言的,因而对同一个油滴,要在实验中测出一组vg、vE的相应数据。用上述方法对许多不同的油滴进行测量。结果表明,油滴所带的电量总是某一个最小固定值的整数倍,这个最小电荷就是电子所带的电量e。将仪器接入220伏交流电源。高压电源调节置于0位置,旋开油滴室盖子,把水準器放置在上极板面上,利用调平螺钉将油滴室内的平行板电容器板面调节水平。调节显微镜目镜,使分划板刻线明显清晰。再把大头针插入上板小孔中,调节光源角度,直到从显微镜中观察大头针周围光场最明亮、範围最大和光强均匀为止,然后拨出大头针拧上盖子準备喷油。由于本步骤要调节电容器极板,谨防极板带电,应由教师调节。用喷雾器将油滴喷入油滴室内,从显微镜中观察油滴运动情况。实验时先找一个合适的油滴(较小的油滴,运动较缓慢,所带电量小于5个基本电量),使它自由落下,然后再加上电场使它向上运动(上升太快或太慢就适当调节电压)。
这样在重力和电场力交替作用下,让油滴反覆上升、下落若干次,在整个视场内都可以看得很清楚,否则需要重新选择。用停表作记录记录油滴n次下落一定的距离L(显微镜分划板刻线的距离),所经历的总时间tg总,记录油滴n次上升同一距离L,所经历的总时间tE总(两次记录必须是对同一油滴),用油滴所通过的总距离nL分别除以总时间tg总及tE总就得出vg和vE利用公式(4)算出油滴所带的电量q。按照上述方法选取6-10个不同的油滴进行测量,计算它们各自所带的电量。数据处理本实验只要求学生进行简单的数字处理和分析。按书后的表格记录数据和计算,该表是用国产油滴仪进行实验所得到的一组数据。
密立根油桶实验

实验背景

1897年汤姆生髮现了电子的存在后,人们进行了多次尝试,以精确确定它的性质。汤姆生又测量了这种基本粒子的比荷(荷质比),证实了这个比值是唯一的。许多科学家为测量电子的电荷量进行了大量的实验探索工作。电子电荷的精确数值最早是美国科学家密立根于1917年用实验测得的。密立根在前人工作的基础上,进行基本电荷量e的测量,他作了上百次测量,一个油滴要盯住几个小时,可见其艰苦的程度。密立根通过油滴实验,精确地测定基本电荷量e的过程,

实验意义

是一个不断发现问题并解决问题的过程。为了实现精确测量,他创造了实验所必须的环境条件,例如油滴室的气压和温度的测量和控制。开始他是用水滴作为电量的载体的,由于水滴的蒸发,不能得到满意的结果,后来改用了挥发性小的油滴。最初,由实验数据通过公式计算出的e值随油滴的减小而增大,面对这一情况,密立根经过分析后认为导致这个谬误的原因在于,实验中选用的油滴很小,对它来说,空气已不能看作连续媒质,斯托克斯定律已不适用,他通过分析和实验对斯托克斯定律作了修正,得到了合理的结果。密立根的实验装置随着技术的进步而得到了不断的改进,但其实验原理至今仍在当代物理科学研究的前沿发挥着作用,例如,科学家用类似的方法确定出基本粒子──夸克的电量。油滴实验中将微观量测量转化为巨观量测量的巧妙构想和精确构思,以及用比较简单的仪器,测得比较精确而稳定的结果等都是富有启发性的。

Copyright@2015-2025 www.aizhengw.cn 癌症网版板所有