语音识别档案

生活百科 2023-01-26 10:45生活百科www.aizhengw.cn

语音识别档案

语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。

基本介绍

  • 中文名语音识别档案
  • 通过识别和理解
  • 转变为相应的文本或命令的高技术
  • 根据识别的对象不同
  • 分为孤立词识别,关键字识别等

技术介绍

与机器进行语音交流,让机器明白你说什幺,这是人们长期以来梦寐以求的事情。语音识别是一门交叉学科。近二十年来,语音识别技术取得显着进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。
语音识别听写机在一些领域的套用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。
语音识别技术所涉及的领域包括信号处理、模式识别、机率论和资讯理论、发声机理和听觉机理、人工智慧等等。

分类套用

根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolated word recognition),关键字识别(或称关键字检出,keyword spotting)和连续语音识别。其中,孤立词识别 的任务是识别事先已知的孤立的词,如“开机”、“关机”等;连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话;连续语音流中的关键字检测针对的是连续语音,但它并不识别全部文字,而只是检测已知的若干关键字在何处出现,如在一段话中检测“计算机”、“世界”这两个词。
根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。
,根据语音设备和通道,可以分为桌面(PC)语音识别、电话语音识别和嵌入式设备(手机、PDA等)语音识别。不同的採集通道会使人的发音的声学特性发生变形,需要构造各自的识别系统。
语音识别的套用领域非常广泛,常见的套用系统有语音输入系统,相对于键盘输入方法,它更符合人的日常习惯,也更自然、更高效;语音控制系统,即用语音来控制设备的运行,相对于手动控制来说更加快捷、方便,可以用在诸如工业控制、语音拨号系统、智慧型家电、声控智慧型玩具等许多领域;智慧型对话查询系统,根据客户的语音进行操作,为用户提供自然、友好的资料库检索服务,例如家庭服务、宾馆服务、旅行社服务系统、订票系统、医疗服务、银行服务、股票查询服务等等。

前端处理

前端处理是指在特徵提取之前,先对原始语音进行处理,部分消除噪声和不同说话人带来的影响,使处理后的信号更能反映语音的本质特徵。最常用的前端处理有端点检测和语音增强。端点检测是指在语音信号中将语音和非语音信号时段区分开来,準确地确定出语音信号的起始点。经过端点检测后,后续处理就可以只对语音信号进行,这对提高模型的精确度和识别正确率有重要作用。语音增强的主要任务就是消除环境噪声对语音的影响。目前通用的方法是採用维纳滤波,该方法在噪声较大的情况下效果好于其它滤波器。

声学特徵

声学特徵的提取与选择是语音识别的一个重要环节。声学特徵的提取既是一个信息大幅度压缩的过程,也是一个信号解卷过程,目的是使模式划分器能更好地划分。由于语音信号的时变特性,特徵提取必须在一小段语音信号上进行,也即进行短时分析。这一段被认为是平稳的分析区间称之为帧,帧与帧之间的偏移通常取帧长的1/2或1/3。通常要对信号进行预加重以提升高频,对信号加窗以避免短时语音段边缘的影响。

常用特徵

线性预测係数LPC线性预测分析从人的发声机理入手,通过对声道的短管级联模型的研究,认为系统的传递函式符合全极点数字滤波器的形式,从而n 时刻的信号可以用前若干时刻的信号的线性组合来估计。通过使实际语音的採样值和线性预测採样值之间达到均方差最小LMS,即可得到线性预测係数LPC。对 LPC的计算方法有自相关法(德宾Durbin法)、协方差法、格型法等等。计算上的快速有效保证了这一声学特徵的广泛使用。与LPC这种预测参数模型类似的声学特徵还有线谱对LSP、反射係数等等。
倒谱係数CEP利用同态处理方法,对语音信号求离散傅立叶变换DFT后取对数,再求反变换iDFT就可得到倒谱係数。对LPC倒谱(LPCCEP),在获得滤波器的线性预测係数后,可以用一个递推公式计算得出。实验表明,使用倒谱可以提高特徵参数的稳定性。
Mel倒谱係数MFCC和感知线性预测PLP不同于LPC等通过对人的发声机理的研究而得到的声学特徵,Mel倒谱係数MFCC和感知线性预测 PLP是受人的听觉系统研究成果推动而导出的声学特徵。对人的听觉机理的研究发现,当两个频率相近的音调发出时,人只能听到一个音调。临界频宽指的就是这样一种令人的主观感觉发生突变的频宽边界,当两个音调的频率差小于临界频宽时,人就会把两个音调听成一个,这称之为禁止效应。Mel刻度是对这一临界频宽的度量方法之一。
MFCC的计算用FFT将时域信号转化成频域,之后对其对数能量谱用依照Mel刻度分布的三角滤波器组进行卷积,对各个滤波器的输出构成的向量进行离散余弦变换DCT,取前N个係数。PLP仍用德宾法去计算LPC参数,但在计算自相关参数时用的也是对听觉激励的对数能量谱进行DCT的方法。

声学模型

语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节机率的计算和音节到字机率的计算。本节和下一节分别介绍声学模型和语言模型方面的技术。
HMM声学建模马尔可夫模型的概念是一个离散时域有限状态自动机,隐马尔可夫模型HMM是指这一马尔可夫模型的内部状态外界不可见,外界只能看到各个时刻的输出值。对语音识别系统,输出值通常就是从各个帧计算而得的声学特徵。用HMM刻画语音信号需作出两个假设,一是内部状态的转移只与上一状态有关,另一是输出值只与当前状态(或当前的状态转移)有关,这两个假设大大降低了模型的複杂度。HMM的打分、解码和训练相应的算法是前向算法、Viterbi算法和前向后向算法。
语音识别中使用HMM通常是用从左向右单向、带自环、带跨越的拓扑结构来对识别基元建模,一个音素就是一个三至五状态的HMM,一个词就是构成词的多个音素的HMM串列起来构成的HMM,而连续语音识别的整个模型就是词和静音组合起来的HMM。上下文相关建模协同发音,指的是一个音受前后相邻音的影响而发生变化,从发声机理上看就是人的发声器官在一个音转向另一个音时其特性只能渐变,从而使得后一个音的频谱与其他条件下的频谱产生差异。上下文相关建模方法在建模时考虑了这一影响,从而使模型能更準确地描述语音,只考虑前一音的影响的称为Bi- Phone,考虑前一音和后一音的影响的称为Tri-Phone。
英语的上下文相关建模通常以音素为基元,由于有些音素对其后音素的影响是相似的,因而可以通过音素解码状态的聚类进行模型参数的共享。聚类的结果称为senone。决策树用来实现高效的triphone对senone的对应,通过回答一系列前后音所属类别(元/辅音、清/浊音等等)的问题,最终确定其HMM状态应使用哪个senone。分类回归树CART模型用以进行词到音素的发音标注。

语言模型

语言模型主要分为规则模型和统计模型两种。统计语言模型是用机率统计的方法来揭示语言单位内在的统计规律,其中N-Gram简单有效,被广泛使用。
N-Gram该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的机率就是各个词出现机率的乘积。这些机率可以通过直接从语料中统计N个词出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram。
语言模型的性能通常用交叉熵和複杂度(Perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。複杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均机率。平滑是指对没观察到的N元组合赋予一个机率值,以保证词序列总能通过语言模型得到一个机率值。通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。

搜寻识别

连续语音识别中的搜寻,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜寻所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设定一个长词惩罚分数。
Viterbi基于动态规划的Viterbi算法在每个时间点上的各个状态,计算解码状态序列对观察序列的后验机率,保留机率最大的路径,并在每个节点记录下相应的状态信息以便反向获取词解码序列。Viterbi算法在不丧失最优解的条件下,解决了连续语音识别中HMM模型状态序列与声学观察序列的非线性时间对準、词边界检测和词的识别,从而使这一算法成为语音识别搜寻的基本策略。
由于语音识别对当前时间点之后的情况无法预测,基于目标函式的启发式剪枝难以套用。由于Viterbi算法的时齐特性,同一时刻的各条路径对应于同样的观察序列,因而具有可比性,束Beam搜寻在每一时刻只保留机率最大的前若干条路径,大幅度的剪枝提高了搜寻的效率。这一时齐Viterbi- Beam算法是当前语音识别搜寻中最有效的算法。 N-best搜寻和多遍搜寻为在搜寻中利用各种知识源,通常要进行多遍搜寻,第一遍使用代价低的知识源,产生一个候选列表或词候选格线,在此基础上进行使用代价高的知识源的第二遍搜寻得到最佳路径。此前介绍的知识源有声学模型、语言模型和音标词典,这些可以用于第一遍搜寻。为实现更高级的语音识别或口语理解,往往要利用一些代价更高的知识源,如4阶或5阶的N-Gram、4阶或更高的上下文相关模型、词间相关模型、分段模型或语法分析,进行重新打分。最新的实时大词表连续语音识别系统许多都使用这种多遍搜寻策略。
N-best搜寻产生一个候选列表,在每个节点要保留N条最好的路径,会使计算複杂度增加到N倍。简化的做法是只保留每个节点的若干词候选,但可能丢失次优候选。一个折衷办法是只考虑两个词长的路径,保留k条。词候选格线以一种更紧凑的方式给出多候选,对N-best搜寻算法作相应改动后可以得到生成候选格线的算法。
前向后向搜寻算法是一个套用多遍搜寻的例子。当套用简单知识源进行了前向的Viterbi搜寻后,搜寻过程中得到的前向机率恰恰可以用在后向搜寻的目标函式的计算中,因而可以使用启发式的A算法进行后向搜寻,经济地搜寻出N条候选。

系统实现

语音识别系统选择识别基元的要求是,有準确的定义,能得到足够数据进行训练,具有一般性。英语通常採用上下文相关的音素建模,汉语的协同发音不如英语严重,可以採用音节建模。系统所需的训练数据大小与模型複杂度有关。模型设计得过于複杂以至于超出了所提供的训练数据的能力,会使得性能急剧下降。
听写机大辞彙量、非特定人、连续语音识别系统通常称为听写机。其架构就是建立在前述声学模型和语言模型基础上的HMM拓扑结构。训练时对每个基元用前向后向算法获得模型参数,识别时,将基元串接成词,词间加上静音模型并引入语言模型作为词间转移机率,形成循环结构,用Viterbi算法进行解码。针对汉语易于分割的特点,先进行分割再对每一段进行解码,是用以提高效率的一个简化方法。
对话系统用于实现人机口语对话的系统称为对话系统。受目前技术所限,对话系统往往是面向一个狭窄领域、辞彙量有限的系统,其题材有旅游查询、订票、资料库检索等等。其前端是一个语音识别器,识别产生的N-best候选或词候选格线,由语法分析器进行分析获取语义信息,再由对话管理器确定应答信息,由语音合成器输出。由于目前的系统往往辞彙量有限,也可以用提取关键字的方法来获取语义信息。

适应强健

语音识别系统的性能受许多因素的影响,包括不同的说话人、说话方式、环境噪音、传输信道等等。提高系统鲁棒性,是要提高系统克服这些因素影响的能力,使系统在不同的套用环境、条件下性能稳定;自适应的目的,是根据不同的影响来源,自动地、有针对性地对系统进行调整,在使用中逐步提高性能。以下对影响系统性能的不同因素分别介绍解决办法。
解决办法按针对语音特徵的方法(以下称特徵方法)和模型调整的方法(以下称模型方法)分为两类。前者需要寻找更好的、高鲁棒性的特徵参数,或是在现有的特徵参数基础上,加入一些特定的处理方法。后者是利用少量的自适应语料来修正或变换原有的说话人无关(SI)模型,从而使其成为说话人自适应(SA)模型。
说话人自适应的特徵方法有说话人规一化和说话人子空间法,模型方法有贝叶斯方法、变换法和模型合併法。
语音系统中的噪声,包括环境噪声和录音过程加入的电子噪声。提高系统鲁棒性的特徵方法包括语音增强和寻找对噪声干扰不敏感的特徵,模型方法有并行模型组合PMC方法和在训练中人为加入噪声。信道畸变包括录音时话筒的距离、使用不同灵敏度的话筒、不同增益的前置放大和不同的滤波器设计等等。特徵方法有从倒谱矢量中减去其长时平均值和RASTA滤波,模型方法有倒谱平移。

微软引擎

微软在office和vista中都套用了自己开发的语音识别引擎,微软语音识别引擎的使用是完全免费的,所以产生了许多基于微软语音识别引擎开发的语音识别套用软体,例如《语音游戏大师》《语音控制专家》《芝麻开门》《警卫语音识别系统》《电脑语音控制专家》等等软体。

性能指标

语音识别系统的性能指标主要有四项。①辞彙表範围这是指机器能识别的单词或词组的範围,如不作任何限制,则可认为辞彙表範围是无限的。②说话人限制是仅能识别指定发话者的语音,还是对任何发话人的语音都能识别。③训练要求使用前要不要训练,即是否让机器先“听”一下给定的语音,以及训练次数的多少。④正确识别率平均正确识别的百分数,它与前面三个指标有关。
小结
以上介绍了实现语音识别系统的各个方面的技术。这些技术在实际使用中达到了较好的效果,但如何克服影响语音的各种因素还需要更深入地分析。目前听写机系统还不能完全实用化以取代键盘的输入,但识别技术的成熟推动了更高层次的语音理解技术的研究。由于英语与汉语有着不同的特点,针对英语提出的技术在汉语中如何使用也是一个重要的研究课题,而四声等汉语本身特有的问题也有待解决。

Copyright@2015-2025 www.aizhengw.cn 癌症网版板所有